
BSD Portalsfor L INUX 2.0

A. David McNab
�

NAS TechnicalReportNAS-99-008

NASA AmesResearchCenter
Mail Stop258-6

Moffett Field,CA 94035-1000
mcnab@nas.nasa.gov

Abstract

Portals,an experimentalfeatureof 4.4BSD, extendthe filesystemnamespaceby exporting
certainopen(2) requeststo a user-spacedaemon. A portal daemonis mountedinto the
file namespaceasif it werea standardfilesystem.Whenthekernelresolvesa pathnameand
encountersaportalmountpoint,theremainderof thepathis passedto theportaldaemon.De-
pendingon theportal“pathname”andthedaemon’sconfiguration,sometypeof open(2) is
performed.Theresultingfile descriptoris passedbackto thekernelwhicheventuallyreturns
it to theuser, to whomit appearsthata “normal” open(2) hasoccurred.A proxy portalfs
filesystemis responsiblefor kernel interactionwith the daemon.The overall effect is that
theportaldaemonperformsanopen(2) on behalfof thekernel,possiblyhiding substantial
complexity from the calling process.Oneparticularlyusefulapplicationis implementinga
connectionservicethatallows simplescriptsto opennetwork sockets. This paperdescribes
theimplementationof portalsfor L INUX 2.0.

�
David McNabis anemployeeof MRJ TechnologySolutions,Inc.

1



2



2. OVERVIEW OF PORTALS

1/ INTRODUCTION

Oneof thefundamentaldesigncommitmentsof UNIX is
thatall I/O devicescanberepresentedassimplefiles in a
hierarchicalnamespace.For example,diskdevicescanbe
addressedaslong arraysof disk blocksthrougha device
mappedinto thefilesystem.As networking becamemore
integratedinto the UNIX environment,it wasnaturalto
seekto extendthis modelto thenetwork.

Programmatically, sockets are representedas file de-
scriptorsjust as regular files are. However they require
considerablydifferentandmorecomplex handling. For
exampleto opena TCP socket to a particularport, one
must first createthe socket, then build a structurede-
scribingtherelevantnetwork address,thenconnect(2)
the socket to the address,and finally begin exchanging
data. In a flexible programminglanguagewith full ac-
cessto theUNIX API this is not terribly complicated,and
in mostcasesit canbe automatedby writing a moreab-
stracttcp open() function that hidesthe details. But
other programmingenvironmentsdo not have accessto
thefull UNIX API. For examplethestandardUNIX shells
andtoolslikeawk(1) canopenandclosefilesbut present
no interfaceto thenecessarysocketsystemcalls.

Thusit is desirable,at theveryleastonanexperimental
basis,to explorethepossibilityof mappingthesetof pos-
siblenetwork connectionsinto thefilesystem.Thiswould
allow any processcapableof the simplestof UNIX file
I/O operationsto opena network connectionandreador
write to it. It alsorenderstheuseof detail-hidinghelper
functions,asdescribedabove, unnecessary, sincea pro-
grammercansimplyopenastandardfilesystempathname
to gainaccessto thenetwork (althoughin somecasesthis
will not provide the necessaryflexibility). Finally there
is a certainaestheticappealin demonstratingthat the el-
egantUNIX modelcanbe extendedto supporta type of
I/O for which it wasnot explicitly designed.

In 4.4BSD, anexperimentalfeaturecalledportalswas
introducedto meetthesetypesof requirements.Thework
describedhereis a transferof the portal conceptto the
L INUX 2.0environment.

2/ OVERVIEW OF PORTALS

In 1985 Presottoand Ritchie describeda connection
server[4]: a serviceprocessthatacceptsrequeststo open
connectionsof somesort, whetherthey be to a network
resourceor instructionsto dial a modemandconnectto a
serviceprovide,andthenprocessesthemon behalfof its
clients. This hasthedesirableeffect of hiding thedetails
of theopeningprocedurefrom theclient.

After a connectionserver doesits work, it musthave
somemechanismby which it cantransferthe opencon-
nectionto theclient. Theinfrastructuretosupportthiswas
first introducedin 4.2BSD andis now implementedin al-
most all UNIX systems.The BSD UNIX sendmsg(2)

andrecvmsg(2) systemcalls canbe usedto passopen
file descriptorsacrossUNIX domainsockets.Thusacon-
nectionservercanreceivearequestfrom aclient,openthe
appropriateconnection,thenusesendmsg() to passback
thefile descriptor. Theclientacceptsit with recvmsg(),
andthefile descriptorcanthenbeusedto accesstheun-
derlying connection. Conceptually, the server’s file de-
scriptor is a handlefor the kerneldatastructuresrepre-
sentingtheconnection.Whenthehandleis passedto an-
otherprocess,thekernelstructuresremainunchangedbut
therecipientgainsa referenceto them.

4.4BSD portalsuseessentiallythe samemechanism,
although the problem is complicatedbecausein order
to map the connectionserviceinto the filespacea ker-
nel filesystemimplementationis required.A portal dae-
mon provides the connectionservice. This is a user-
spacebackgroundprocessthat acceptsconnectionre-
quests,doesthe appropriatework, and returnsan open
file descriptorusing sendmsg(). The kernelgenerates
connectionrequestsbasedonthepathnameusedto access
a portal-space“file”.

Themappingof “connectionspace”into thefile names-
paceis performedby a filesystemcalledportalfs. Con-
ceptually, portalfsis simple. Thepoint at which thepor-
tal namespaceis mountedindicatesa borderbetweenthe
“normal” file namespaceandthe connectionnamespace.
As thekernelprocessesopen() requestsit graduallyre-
solves the pathnamepassedasan argumentof open().
If aportalmountpoint is encountered,theresolutionpro-
cessstops.The portionof the pathnameafter the mount
point is passedto the portal daemon. The daemonin-

3



3. DESIGN AND IMPLEMENTATION

terpretsthe path as a network connectionspecification,
comparesit with its configurationfile to seewhetherthe
type of connectionis supported,and then executesthe
open() on behalfof thekernel.Theopenfile descriptor
is passedback usingsendmsg(), and the kerneleffec-
tively callsrecvmsg() to extract thefile descriptor. All
of the communicationbetweenkerneland daemonpro-
cesstakesplaceover UNIX domainsockets,usinga sim-
ple protocol.portalfsis responsiblefor acceptingtheun-
resolvedportionof thepathnamefrom thekernel,broker-
ing theexchangewith thedaemonprocess,andreturning
thenew file descriptorto theprocessthatcalledopen().

Consideranexample.We mounta portaldaemoninto
the file namespaceat /p, anda usersubsequentlyopens
/p/tcp/foo.com/1795. The kernelbegins translating
the pathname,but whenit encounters /p it determines
thata portal mountpoint hasbeencrossed.The remain-
derof thepathname, tcp/foo.com/1966, is passedby
portalfsto theportaldaemon.This is interpretedasa re-
questto openaTCPconnectionto hostfoo.com, access-
ing network port 1966. The daemonbuilds an address
structureandperformsthenecessarysocket() andcon-
nect() callsto setuptheconnection,thensendsbackthe
openfile descriptor. Eventually the descriptoris passed
backto theclient process,which cannow useit to access
port 1966onfoo.com.

Theimplementationof 4.4BSD portalsis describedin
detailby PendryandStevens[2]. Thesourcecodeis also
available via the freely available BSD implementations
NetBSDandFreeBSD,aswell asothers.

3/ DESIGN AND IMPLEMENTATION

The primary designgoal was to provide portal service
andsupportthe4.4BSD portaldaemonwithout substan-
tial modification. The L INUX implementationof portals
should appearto the portal daemonto be functionally
the sameasthe BSD implementation.This allows us to
takeadvantageof previouswork in developingportaldae-
mons.

A secondarygoal was to limit changesto the L INUX

kernel. Naturally the portal filesystemitself, previously
unimplementedin L INUX, is new code,but theidealwas
to avoid makingany otherchangesto theOS.It turnsout

that someminor modificationswerenecessary, but they
consistof ahandfulof additionallinesof codein two ker-
nelmodules.

Anothersecondarygoal was to ensurethat the portal
codedid not introduceany additional instability to the
L INUX kernel,nor that it could causeuserprocessesto
“lock up”, in otherwords to sleepuninterruptiblywhile
accessingportals.

3.1/ THE PORTAL DAEMON

The4.4BSD portaldaemonis implementedaschild pro-
cessof thecommandthatmountsaportalfilesystem.This
program,mount portal(8), typically runsaspartof the
bootprocess.Its first actionis to opena socket thatwill
be usedto listen for kernel requests.This listen socket
is recordedas one of the portalfs-specificargumentsto
mount(2), which is called to graft portalfs into the file
namespace.If the mountsucceeds,the programspawns
a copy of itself which becomesthe portal daemon.This
daemonrunsin the backgroundfor the remainderof the
portal’s lifetime, acceptingincomingrequestsandspawn-
ing a copy of itself to processeachof them.After spawn-
ing the daemonthe parentexits, so that themount com-
mandbehavessynchronouslyasonewouldexpect.

Themount portal programusedfor the L INUX port
wastakenfrom release1.3.1of NetBSD.It supportstwo
typesof portals: tcp and fs. The tcp type mapspath-
namesof the form tcp/<host>/<port> into network
connections,where<host> canbe a hostnameor an IP
addressand<port> is a port number. The fs-style por-
tal simply re-mapspathnamesof the form fs/<path>

to <path>. It is intendedto beusedto supportcontrolled
egressfrom achroot(8) environment.An extendedver-
sion of the portal daemoncould supportfilesystemex-
tensions,for exampleaccesscontrol lists. The NetBSD
versionof the daemondid not supportthe tcplisten-type
portalsdescribedby StevensandPendry, henceit is not
possibleto implementTCPserversusingthis code1.

Themount portal programitself waswell writtenfor
4.4BSD andwasrelatively easyto port. The mostsub-

1Of coursesincetheL INUX implementationof portalfsis compatible
with the BSD portaldaemonprotocol,an extantdaemonthat supports
tcplistenportalscanbe incorporatedrelatively easily, requiringonly a
portof user-level code.

4



3. DESIGN AND IMPLEMENTATION

stantialchangewasrequiredbecauseold-styleregularex-
pressionlibrary routineswereusedto processtheconfig-
urationfile. L INUX did not supporttheseroutineswell,
so the programwasmodifiedto make POSIX-compliant
calls. Othermodificationswereprimarily to remove de-
pendency on 4.4BSD’s mountinfrastructure,which pro-
videsutility functionsfor processingarguments,andmi-
nor changesto functioncallsargumentsor headerfile in-
clusion.

There was what appearedto be a minor bug in the
portal daemon’s handlingof fs-style portals. Files were
always openedwith modeO RDWR|O CREAT. This pre-
ventedreadsfrom files to which the userdid not have
write permission;anunnecessaryrestriction.Fortunately,
theportalcredentialsstructure,which is passedfrom the
kernel to the daemonandprimarily consistsof informa-
tion aboutthe useridandgroupid of the processaccess-
ing theportal,alsoincludesa field for theopen() mode.
By changingtheopen() call in theportaldaemonto use
themodevaluefrom this field it waspossibleto correctly
openread-onlyfiles. However becauseof restrictionsin
themodeinformationavailableto thekernelwhenit sends
theportalrequest,all write-modeopenshavetheO CREAT

flagset.

A significantconcernduring designwas whetherthe
UNIX domainfile descriptorpassingcodein the L INUX

kernelworkedproperly. This is anobscureportionof the
BSD networkingsystemandtheauthorconsideredit pos-
siblethatthecodewaseithernotfully implementedor not
correctin L INUX. To allay theseconcerns,a user-space
portaltestclientwasdeveloped.Thisconsistedof approx-
imately200linesof C codeintendedto simulatetheker-
nel’s componentof the interactionbetweenportalfsand
theportaldaemon.Essentiallyit constructedaportalopen
specificationbasedon commandline arguments,sentthe
requestto theportaldaemon,accepteda file descriptorin
return,andthenreada small chunkof datafrom the file
descriptor. Usingthis codeit waspossibleto testandde-
bug theportaldaemonbeforethekernelcodethatwould
call it wasdeveloped. It turnedout that the L INUX ker-
nelperformedthefile descriptorpassingcorrectlyandthe
portaldaemonbehavedperfectlywithoutadditionalmod-
ifications.This provideda certainpeaceof mind thatwas
invaluableduringkerneldebugging.

3.2/ THE PORTAL FILESYSTEM

Any typeof syntacticport of the4.4BSD portalfskernel
codewasimpractical. Despiteproviding roughlysimilar
functionalityin many areas,theL INUX andBSD kernels
are very different. Thus the “port” of portalfs actually
consistedof establishinga thoroughunderstandingof the
BSD codeandthendecidinghow to reconstructsimilar
behavior for L INUX.

The L INUX file systeminfrastructuredoes not pro-
vide vnodes,usedin BSD to provide an abstractionof
filestore-specificinodes. Vnodesstorefunction vectors
thatdescribethefilesystemspecificimplementationof ab-
stractoperations.In L INUX, theinode structureactsas
a vnode,in that it is the genericin-memoryrepresenta-
tion of a filesysteminode,but it is alsouseddirectly by
somefilesystems.A genericVirtual Filesystem, or VFS,
providesskeletal filesystemfunctionality. Threesetsof
function calls canbe provided by filesystemimplemen-
tors to overrideor supplementtheVFS calls[5]. Theend
resultis similar to thevnodeinterfacebut lessflexible and
rigorous.

Superblock operations managethe filesystemsuper-
block, providing facilities such as statfs(), and are
responsiblefor correctly mountingand unmountingthe
filesystem.Inodeoperationsareusedto supportgeneric
filesystem object services, such as link() and un-

link(), create(), lookup(), mkdir() andrmdir(),
andso forth. Operationsthat affect the kernel’s file

structure,which is essentiallythe internalrepresentation
of an openfile descriptor, are segregatedas file opera-
tions. Theseconsistof lseek(), read(), write(),
open(), etc.

File systemdevelopmentin L INUX largely consistsof
decidingwhichof themembersof thesethreesetsof oper-
ationsmustbeexplicitly implementedfor thenew filesys-
tem, in contrastwith thosefor which the genericVFS
functionality is sufficient. In thecaseof portalfs,mostof
the superblockoperationsarespeciallywritten, but only
oneeachof thefile andinodeoperationsarerequired.

Superblock Operations

Fivecustomsuperblockoperationsarerequiredto support
portalfs.Theseprimarily supportmountingandunmount-

5



3. DESIGN AND IMPLEMENTATION

ing. Portal read inode() “reads” a portal inode—in
factthereis asingleinodeto read,representingtherootdi-
rectory, andit is synthesizedandstoredin memoryrather
thanbeingreadfrom filestore.Portal write inode()

consistsof marking the inode clean, which should be
a no-op but is included as a safety measure. Por-

tal put inode() “releases”an inodethat is no longer
needed. For portalfs this consistsof deallocatingstor-
ageusedto recordthe connectionthat is beingopened.
Portal put super() is called when the filesystemis
unmountedandany superblock-relatedcleanupneedsto
bedone.For portalfsthis consistsof releasingsomeker-
nel memoryusedto storedataneededto find the portal
daemon,specificallya socketpointeranda file reference.
VFSmandatesthatportalfsalsoresetthesuperblock’saf-
filiated device to zero, indicating“none”. Finally, por-
tal statfs() synthesizessomereasonable-lookingval-
uesfor astat structure,sothatprogramslikedf(8) will
displayportalfilesystemdatareasonably.

Inode Operations

The open(2) systemcall invokes two VFS operations:
lookup() and open(). The former is called repeat-
edlyto resolvethedirectorycomponentsof thepathname.
The latter is called once, when the “end” of the path-
nameis reached.For theportal,filesystemopen() is the
workhorse,andasa file operationit is describedin the
next section.

VFS lookup() calls a filesystem-specificlookup()
to do any special processing. In the case of por-

tal lookup(), this consistsof recordingthe remaining
pathnameso that the file operationopen() can subse-
quentlyretrieve it andsendit to theportaldaemon.This
is doneby allocatingan inodeandstoringthe pathname
in it.

The genericL INUX inode containsa union structure
thatprovidesaplaceto storefilesystem-specificdata.One
designoption was to createa portal datastructureand
add it to the list in the union. However this required
modifying the headerfile that specifiestheinode struc-
ture. Fortunately, to provide supportfor run-time con-
figurable kernel modules,L INUX designersincluded a
genericvoid* pointerin the union. portal lookup()

allocatesachunkof kernelmemorysufficient to storethe

remainingpathname,copiesthepathinto it, andthensets
thegenericpointerto theaddressof thestring. If the in-
ode is freed using the superblockput inode() opera-
tion, this storageis deallocated.

Unfortunatelythe actual implementationwas not this
simple.In 4.4BSD, thelookup() vnodeoperationtakes
as argumentsthe remainderof the pathnameto be re-
solvedandtheaddressof a pointerto thepathnamecom-
ponentto beresolvednext. Thusthe4.4BSD portalcode
canextract the entireremainderof the pathname,record
it, move theprogresspointerto theendof thestring,and
return.Thisallows thefilesystemto choosehow muchof
the pathto resolve andto interpretit in whatever way is
useful.

In L INUX, lookup() takesas argumentsa directory
anda filenameto look up in thatdirectory, andit returns
the resultinginode. In otherwordsthe L INUX VFS as-
sumesthat all pathnamesare a sequenceof directories,
possiblyendingwith a file, andthat they canberesolved
one componentat a time. For portalfs, this is a disas-
trous assumption,and in generalit is needlessand irk-
some. For exampleit presentsa problemfor developers
of distributedfilesystems,wherea significantoptimiza-
tion mightbeto resolveanentireremotepathnamein one
operation.

Two designoptions presentedthemselves. The first
is to allow the L INUX VFS to behave as it wants to,
repeatedlycalling portal lookup() for eachcompo-
nentof the “pathname”. This addssignificantcomplex-
ity: portalfsnow needsto keeptrack of the sequenceof
lookup() calls and build the full pathnameas it goes.
The alternative is to inserta snippetof codeto the VFS
implementationof open() sothatif a portalmountpoint
is crossed,theentireremainderof thepathnameis passed
as a single argumentto lookup(). The latter imple-
mentationwaschosen,despitethe fact that it requireda
modificationto theextantL INUX code—albeita four line
change. This choicewasmadeprimarily in the interest
of minimizing complexity andis discussedfurther in the
commentarysection.

After this changeto the kernel’s fs/namei.c routine
wasmade,theimplementationof portal lookup() was
straightforward.

6



3. DESIGN AND IMPLEMENTATION

File Operations

Themajority of the work requiredto implementportalfs
comesin theopen() file operation,implementedaspor-
tal open(). By thetimethekernelcallsthisroutine,the
portal “pathname”—thatis, connectionspecification—
has been recordedas auxiliary data in an inode allo-
catedfor this purpose. This inode is passedinto por-

tal open(), alongwith apointerto apre-allocatedfile
structurethatwill beusedfor thefile beingopened.

In the abstract,the work doneby portal open() is
straightforward:extracttheconnectionspecification,send
it to the daemon,wait for a responsethat includesa file
descriptor, andthenreturnthat file descriptor. Note that
this laststeprequiressomeskullduggery, describedlater.

In practice,the implementationof portal open() is
fairly complicatedbecausea substantialamountof net-
working codehadto be duplicated.As discussedin full
detail in the commentarysection,the L INUX implemen-
tation of UNIX domainsocketsmakesassumptionsthat
limit its usefulnesswhencalledfrom elsewherein theker-
nel. For example,it is assumedthatcertaindatastructures
arestoredin the userprocess’s virtual memorycontext,
hencethey must be copiedusing specialfunctions that
fail whencalledon kernel-allocatedmemory.

Theresultis that in orderto make thenecessarycon-
nect(), sendmsg(), andrecvmsg() calls,specialver-
sions of thesefunctions had to be re-implementedin-
side portalfs. In practicethis consistedof cutting out
the UNIX domainimplementationsfrom the networking
portion of the kernel andpastingthem into the portalfs
code. Much of the complexity of the full original calls
wasunneeded,sinceportalfshasvery specificneeds,and
this codewasexcised. Whererequired,calling parame-
terswerechangedandassumptionsaboutthelocationand
typeof memorybeingcopiedwerechanged.Nonetheless
an undesirableduplicationof codeoccurred,and if the
standardimplementationsof UNIX domainsendmsg()
andrecvmsg() areever changedtheportal-specificver-
sionsmay requiremodification. The portal versionsare
definedasstaticallyscopedfunctionsaccessibleonly to
portal open().

The final function of portal open() is in returning
thefile descriptoracquiredfrom theportaldaemonto the
user. In factsomethingslightly differenthappens.When

portal open is called,a new, emptyfile tableentryhas
alreadybeenallocatedfor thecallingprocess.Likewise,a
file descriptorhasbeenallocatedto point to thatfile struc-
ture. This is the file descriptorthat will be returnedto
theuser. Henceportal open() mustcopy thecontents
of thefile entrycorrespondingto theportalfile descriptor
into thenewly allocatedfile entrysetupbyopen(). Then
the descriptorandfile entry originally returnedfrom the
daemoncanbedeallocated.

In implementingportal open() the needfor a sec-
ondmodificationto theexternalkernelarose.In L INUX,
networking protocolshave affiliated vectorsof functions
similar to thoseusedin the VFS. For exampleeachpro-
tocol implementsa create() method to implement the
protocol-specificdetailsof the socket(2) systemcall.
Since portal open() needsto allocate a UNIX do-
main socket, it was necessaryto call unix create(),
theUNIX domainprotocol-specificinitialization method.
Howeverthesefunctionsaredefinedwith staticscopeand
accessibleonly to the implementationof sockets. Thus
onceagain the designdecisionwas whetherto make a
changeto thekernelatlargeor to duplicateachunkof ker-
nel networking codeinside the portalfs implementation.
In thiscase,unlikethoseof sendmsg() andrecvmsg(),
the extant kernel function worked correctlywhencalled
from the portal code. Hence it seemedmore natural
to modify the networking code to export the protocol-
specificfunctionsthanto duplicatecode. This wasdone
by addinga three line function to net/socket.c that
takesasanargumenta protocolspecificationandreturns
a pointerto a structurecontainingtheoperationsspecific
to thatprotocol.

3.3/ IMPLEMENTATION SUMMARY

Excluding the implementationof portalfs itself, only
two functionalchangesweremadeto the L INUX kernel.
Four lines were addedto fs/namei.c to short-circuit
pathnameresolutionin the specialcasewherea portal
mount point is crossed,and three lines were addedto
net/socket.c to export the protocol specificmethod
vector. Therewerealsominorchangesto thebuild infras-
tructureto supporttheportalchanges,for exampleadding
a portal filesystemtype and addinga kernel configura-
tion variableto specifywhetheror not portalsare to be

7



5. COMMENTARY ON LINUX

includedin a build.
portalfsitself wasimplementedin threeC files,onefor

eachtype of operation.super.c implementsthe super-
block operationsandis 310 lines long. inode.c im-
plementsportal lookup() andconsistsof 131linesof
code. file.c implementsthe more complicatedpor-
tal open() file operationandis 542lineslong. Overall
approximately1000 lines of kernel code(commentsin-
cluded)wererequiredto implementportalfs.

Theadministrativemount portal commandandpor-
tal daemonwereportedfrom 4.4BSD andrequiredonthe
orderof thirty linesof changes,mostlydealingwith regu-
lar expressionprocessing.

4/ RESULTS

The primary designgoal wassatisfied.The BSD portal
daemonwasportedwithoutmajorchangesandworkscor-
rectly astheconnectionservicefor theL INUX portal im-
plementation.It is now possibleto mountaportalfilesys-
tem andopennetwork connectionsin L INUX in exactly
the sameway as takesplacein 4.4BSD UNIX. The fs-
type portalsalsowork correctly, with the exceptionthat
the user’s umaskis ignored. This couldbe correctedbut
would requiremodifying the portal credentialsstructure
to includeumaskdata. Createdfiles do have the correct
userandgroupownership,andthecorrectaccesscontrols
areenforced.

One secondarydesigngoal—minimizing changesto
the L INUX kernel—was achieved. Only seven lines of
codewere addedto the L INUX kernel. The other sec-
ondarygoal,avoiding introducingnew kernelinstability,
alsoseemsto havebesatisfied,althoughtheportalimple-
mentationhasnotbeenheavily testedorevenusedbyany-
onebut thedesigner. It is possiblethat thereareresource
leaksor corner-caseerrorsyetto bediscovered.Thebasic
implementationdoesnot causeany kernelfaults.

Performancetestswere minimal. To ensurethat the
costof openinga portal socket is not prohibitive relative
to thecostof makingdirectsocket systemcalls,two pro-
gramswerewritten. The first wasa shell script that re-
peatedlyreadfrom the daytimeserviceon the localhost
usingcat < /p/tcp/localhost/daytime, where/p
wastheportalmountpoint. ThesecondwasashortC pro-

gramthat did the samething usingsocket systemcalls.
The shell versioncompleted100 readsin 2.05 seconds,
with userCPUconsumptionof 0.44secondsandsystem
CPUconsumptionof 0.41seconds2. TheC programper-
formedthe samenumberof readsin 0.52seconds,con-
sumingonly 0.03secondsof userCPUtimeand0.07sec-
ondsof systemCPUtime.

Thusinitially accessinganetwork resourcevia aportal
takeson theorderof four timestheelapsedtimeandcon-
sumesroughlyanorderof magnitudemoreCPUtimethan
usingsocketsdirectly. Thesearevery crudeestimatesin-
tendedonly to give a roughideaof portal overhead.Of
coursethesenumbersareof dubiousimportanceanyway,
sincethey representa one-timecostfor openingthepor-
tal. All subsequentaccessoccursas if the userprocess
haddirectly openedthe file or socket directly, thusthere
is no overhead.

5/ COMMENTARY ON L INUX

L INUX is a youngoperatingsystem,anddirectcompari-
sonwith themorematureBSD codebaseis perhapsun-
fair. Therecertainlyappearto bepartsof theL INUX ker-
nel thatwould benefitfrom an infusionof thedesignex-
pertisedevelopedover thenearlytwentyyearsof BSD’s
lifetime—for example the introduction of a vnode ab-
straction. If the L INUX developmentmodelscaleswell,
architecturalchangeslike this should take placeevolu-
tionarily asthecurrentdesignencounterslimitations.

However thereis a differentclassof problemthat be-
came apparentduring the portalfs work. This is not
so much an issue of operatingsystemdesign—which
shouldwork itself out if theL INUX developmentmodelis
valid—but ratherissuesrelatingto dubiousprogramming
methodology. Thatis, theseareengineeringconcernsthat
apply to any large softwaresystem,regardlessof its ap-
plication.

One example is a failure to rigorously adhereto the
principlesof functionalprogramming,specificallya ten-
dency to groupseveralclearlyorthogonalfunctionsinto a
singlelarge subroutine.This makesit impossibleto use

2This excludedthe overheadof a shell loop, which wasmeasured
independentlyandsubtractedfrom the testresults. It wasnot possible
to accountfor thetime consumedby theportaldaemonon behalfof the
user.

8



6. RELATED WORK

someapropersubsetof thosefunctions.An examplewas
in the implementationof portal connect(). During
the portalfsdevelopmentone requirementwas to take a
pair of socket structuresand connectthem. This is
exactly the functionality provided by the UNIX domain
socket protocoloperationunix connect(), exceptthat
unix connect() takesasocketandanaddressstructure
asargumentsinsteadof two sockets. In otherwordsthe
conversionof the addressto a socket structure,which is
completelyindependentof thelogic necessaryto connect
two sockets,is hardwiredinto thesamefunctionthatdoes
the connect. A similar and perhapsmore vexing prob-
lem wasthe failure to separatethe orthogonalfunctions
of copying-in datafrom theuser’saddressspaceandcon-
ductingsocket functionsusingthat data. This is the de-
signerrorthatforcedtheduplicationthesendmsg() and
recvmsg() codewith minor changespertainingonly to
thesourceof thedatauponwhich they wereoperating.

A secondproblemis excessive andunnecessaryuseof
internal linkage, i.e. the declarationof kernel functions
asstatic. In somecasesthere is no conceivableuse
for a “helper” functionanda staticdeclarationis clearly
in order. This is thecasein the implementationof por-
tal open(), which usesits own staticallydeclaredver-
sionsof sendmsg() andrecvmsg(). Thesearespecial
purpose“hacks” thatclearlyshouldnotbeexportedto the
restof thekernel.Howevertherewereseveralcaseswhere
usefuldataor functionalitywasdeclaredstaticfor no ap-
parentreason.Onecaninfer thattherewasaconcernover
namespacepollution, in which caseperhapsa subsystem
namingconventionshouldbe introduced,or perhapsthe
codeauthorsimply failed to considerthe possibility that
thefunctionwouldbeusefulelsewhere.A primeexample
wasin failing to provide any mechanismto accessproto-
col specificoperationsoutsideof thesocket implementa-
tion code.

The L INUX kernel appearsvery much to have been
written to servicerequestsfrom user-space. Of course
this is the primary function of an operatingsystem—to
provideavirtual machineabstractionfor userspaceappli-
cations.However it is oftenthecasethata pieceof code
usefulfor applicationlevel softwarewill alsobeusefulto
kernelcodein anothersubsystem.Carefuldesignof ker-
nel subsystemabstractionsandintrakernelprogramming
interfacesis important for keepingan operatingsystem

flexible. This is one designelementof the BSD-based
kernelsthatmakesthemattractive to OSscholarsandde-
velopers,andboth of the methodologicalproblemareas
describedabovesuggestthanit is anareato whichL INUX

designerscouldpaymoreattention.

6/ RELATED WORK

Theoriginal BSD implementationof portalsis described
in detail by Stevens and Pendry[2] and briefly in the
4.4BSD book[3], the latter also describingthe general
BSD file systeminfrastructure.

PresottoandRitchiedescribethegeneralideaof acon-
nectionserver[4], andStevenslaterprovidesanexample
of sucha systemusingUNIX domainsocketpassing[6].

The Sprite operatingsystemprovide pseudo-devices,
which mapuserprogramsinto thefile space[7].

Plan 9 extendedthe UNIX I/O model to the network
by building networking into the kernelin a morefunda-
mentalway thanBSD did with sockets. All Plan9 I/O,
includingnetworking,is donethroughthefile namespace.
Userprocesseshave accessto detailednetwork informa-
tion eitherdirectly throughthe file systemor througha
connectionservercalledcs, whichis alsomappedinto the
file namespace[8].

7/ FUTURE WORK

Oneavenuefor futurework is expandingthefunctionality
of theportaldaemon,for exampleaddingtcplistencapa-
bilities so that scriptscan useportalsto act as network
servers. Another possibility would be modifying the fs
server to implementaccesscontrol lists, assuggestedby
StevensandPendry.

Themount portal(8) programcouldbe betterinte-
gratedinto thesuiteof L INUX mountprograms,sothatit
conformsto L INUX standards.

Thebasictechniqueof usingUNIX domainsocketsin-
sidethekernelto communicatewith user-spaceprocesses
presentssomeinterestingpossibilities. For example it
maybepossibleto build a generalpurposeproxy filesys-
tem. This would look to externalprocessesto bea “nor-
mal” filesystem,but internallyit would directall requests
for inodes,directory entries,and other filesystemdata

9



8. CONCLUSION

to an external daemon. In other words a daemonpro-
cesswould act as the filestoreportion of the filesystem.
The daemoncouldsynthesizedataasneeded,couldper-
form transformationson extantdata,or couldretrieve the
datafrom otherhosts. This would supportout-of-kernel
filesystemdevelopment,althoughit introducessubstan-
tial safetyconcerns—theproxy file systemwouldhave to
becarefulto ensurethatdatastructuresreturnedfrom the
daemonwere consistentand would not introduceprob-
lems.

8/ CONCLUSION

The goalsof this work wereto supportBSD portal pro-
cessesin a stableL INUX environmentwith asfew code
modificationsaspossible. Theseweremet. Only seven
linesof kernelcodewerechanged,andtheL INUX imple-
mentationof portalsworks correctlywith the portedbut
basicallyunmodifiedBSD portal daemon. Portalspro-
vide network accessfor scriptsandprogramsthatdo not
have accessto the full UNIX networking API. The ex-
tentto whichthis is practicallyusefulis anopenquestion,
but givenanimplementationwith whichto experimentthe
usercommunityshouldprovide theanswer.

10



Bibliography

[1] Joy, Cooper, Fabry, Leffler, McKusick& Mosher, 4.2BSDSystemManual, UNIX Programmer’sManual, 4.2
Berkeley SoftwareDistribution,Volume2C,ComputerSystemsResearchGroup,Univ. of California,Berkeley,
CA; 1983.

[2] R. Stevens& J.Pendry, “Portalsin 4.4BSD,” USENIX ConferenceProceedings,pp.1-10,January1995.

[3] McKusick,Bostic,Karels,& Quarterman,TheDesignandImplementationof the4.4BSDOperatingSystem,
pp.237-8(portals)andgeneralmaterial,Copyright c

�
1996by Addison-Wesley PublishingCompany, Inc.

[4] D. L. Presotto& D. M. Ritchie,“InterprocessCommunicationin theNinth Edition UNIX System,”
Proceedingsof the1985SummerUSENIXConference, PortlandOR;1985.

[5] M. Beck,H. Böhme,M. Dziadzka,U. Kunitz,R. Magnus,& D. Verworner, LinuxKernelInternals,Second
Edition, Copyright c

�
1998AddisonWesley Longman,ISBN 0-201-33143-8.

[6] W. R. Stevens,UNIX NetworkProgramming, Copyright c
�

1990by Prentice-Hall.

[7] B. B. Welch& J.K. Ousterhout,“PseudoDevices:User-Level Extensionsto theSpriteFilesystem,”
Proceedingsof the1988SummerUSENIXConference, pp.37-49,SanFranciscoCA (1988).

[8] R. Pike,D. Presotto,S.Dorward,B. Flandrena,K. Thompson,H. Trickey, P. Winterbottom,“Plan9 from Bell
Labs,” Plan9: TheDocuments, Copyright c

�
1995by AT&T, pp.1-22.

11


